달력

11

« 2017/11 »

  •  
  •  
  •  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  •  
  •  
2017.03.11 00:14

8일간의 선형대수학 정오표 Math2017.03.11 00:14

8일간의 선형대수학 책에 오류가 몇 개 있어서 목록을 작성해 둔다.


p. 74

이 된다. 그런데 \( a_i \ne 0 \)이라고 하였으므로 \( \lambda_i = \lambda_{\color{red}{\ell+1}} \)이 되어 모순이다.


p.125


이 된다. 벡터 \( \mathbf{v}_3 \)의 놈을 계산하면

\[\| \mathbf{v}_3 \|^2 = \left\langle x^2 - \dfrac13,x^2 - \dfrac13 \right\rangle = \int_{-1}^1 \left( x^2 - \frac13 \right)^2 dx = \color{red}{\dfrac{8}{45}} \]

이므로 세 번째 벡터를 \( \mathbf{v}_3 = \frac{\color{red}{3\sqrt{5}}}{2\sqrt{2}}\left( x^2 - \frac13 \right) \)로 고치면 정규벡터가 된다.


p.127


(2) \( X = \begin{bmatrix} x_{ij} \end{bmatrix}\), \( Y = \begin{bmatrix} y_{ij} \end{bmatrix}\)라 하면, \( \color{red}{XY} \)의 대각성분이

\begin{align*} &x_{11}y_{11}+x_{12}y_{21}+\dotsb+x_{1n}y_{n1}, \\ &x_{21}y_{12}+x_{22}y_{22}+\dotsb+x_{2n}y_{n2}, \\ &\dotsc, \\ &x_{n1}y_{1n}+x_{n2}y_{2n}+\dotsb+x_{nn}y_{nn} \end{align*} 이고, \(YX\)의 대각성분이 \[\color{red}{ \begin{align*} &x_{11}y_{11}+x_{21}y_{12}+\dotsb+x_{n1}y_{1n}, \\ &x_{12}y_{21}+x_{22}y_{22}+\dotsb+x_{n2}y_{2n}, \\ &\dotsc, \\ &x_{1n}y_{n1}+x_{2n}y_{n2}+\dotsb+x_{nn}y_{nn} \end{align*} } \] 이므로 \(\operatorname{tr}(XY) = \operatorname{tr}(YX)\)가 성립한다. 그러면


p.129


를 계산하면 \[ \begin{bmatrix} 59 & -1 \\ -1 & 5 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \color{red}{36} \\ 5 \end{bmatrix} \] 이고 방정식을 풀면 \(a = \color{red}{\frac{185}{294}}\), \( b = \color{red}{\frac{331}{294}}\)이다.



저작자 표시 비영리 변경 금지
신고

'Math' 카테고리의 다른 글

세 명의 Jordan  (1) 2017.09.24
2017년 국제 수학 올림피아드  (0) 2017.07.23
8일간의 선형대수학 정오표  (0) 2017.03.11
Raymond Smullyan 교수 별세  (0) 2017.02.15
윤옥경 교수님 별세  (1) 2017.02.08
2017년 수학 달력  (0) 2016.10.21
Posted by puzzlist