달력

2

« 2020/2 »

  •  
  •  
  •  
  •  
  •  
  •  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
어느 고등학교 교과서에서도 다루지 않지만, 어느 참고서에서도 다루는 Cayley-Hamilton 정리.

이 정리를 증명한 사람은 누구일까?

1. 케일리
2. 해밀턴
3. 케일리와 해밀턴 (공동 작업)
4. 케일리-해밀턴 (졸리오-퀴리처럼 한 사람의 성)
5. 넷 다 아님. (그럼 누구?)

'Math' 카테고리의 다른 글

pi-day  (4) 2010.03.13
케일리-해밀턴 정리  (5) 2010.03.08
케일리-해밀턴 정리는 누가 증명하였을까  (3) 2010.03.07
수들은 언제 태어났을까?  (0) 2010.03.06
삼겹살 데이  (1) 2010.03.04
2 두 개로 5 만들기  (25) 2010.01.14
Posted by puzzlist

댓글을 달아 주세요

  1. 2010.03.07 03:18  댓글주소  수정/삭제  댓글쓰기

    비밀댓글입니다

  2. Favicon of https://blog.hshin.info BlogIcon Ens 2010.03.07 04:10 신고  댓글주소  수정/삭제  댓글쓰기

    두 명이 서로 독립적으로 증명한게 아닐까 생각했는데..
    아무도 공식적으로 증명을 출판한 적이 없군요.. 이런 이런..

    http://www.mathpages.com/home/kmath640/kmath640.htm
    Every square matrix satisfies its own characteristic equation. This interesting and important proposition was first explicitly stated by Arthur Cayley in 1858, although in lieu of a general proof he merely said that he had verified it for 3x3 matrices, and on that basis he was confident that it was true in general. Five years earlier, William Rowan Hamilton had shown (in his “Lectures on Quaternions”) that a rotation transformation in three-dimensional space satisfies its own characteristic equation. Evidently neither Cayley nor Hamilton ever published a proof of the general theorem. References to this proposition in the literature are about evenly divided in calling it the Cayley-Hamilton theorem or the Hamilton-Cayley theory. The first general proof was published in 1878 by Georg Frobenius, and numerous others have appeared since then.

  3. Favicon of http://adexam.textcube.com BlogIcon 애드민 2010.03.07 12:11  댓글주소  수정/삭제  댓글쓰기

    He also gave the first full proof for the Cayley–Hamilton theorem.- http://en.wikipedia.org/wiki/Ferdinand_Georg_Frobenius
    마치 앤드루 와일스가 페르마의 마지막 정리를 증명한 꼴이네요.