달력

1

« 2025/1 »

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

'사칙연산'에 해당되는 글 3

  1. 2008.04.02 사칙연산과 환원주의 1
  2. 2008.04.02 사칙연산과 pgr21 7
  3. 2008.03.28 사칙연산과 괄호 10
2008. 4. 2. 20:58

사칙연산과 환원주의 Math2008. 4. 2. 20:58

사칙연산과 괄호
사칙연산과 pgr21

뭔가 제목이 거창해 보이지만 페이크고...

pgr21 게시판에서 "곱셈을 덧셈보다 먼저 하는 게 당연하다"고 주장하는 사람들의 논리를 보니 일종의 환원주의라는 생각이 든다. 그 논리인즉슨, "곱셈은 덧셈을 간단히 표현한 것이니까 곱셈을 덧셈으로 바꿔 넣는다고 생각하면 곱셈을 먼저 하는 것이 당연하다"라는 것인데, 그냥 척 봐도 반론을 생각할 수 있겠다.

우선, 곱셈이라는 연산이 단순히 덧셈을 간단히 표현한 것은 아니라는 점이다. \(2\times3=6\) 같은 거야 2를 3번 더한 것이지만, \(\sqrt{2}\times\sqrt{2}=2\)는 어쩌라고? \(\sqrt{2}\)를 \(\sqrt{2}\)번 더하나? 어떤 점에서는 트집 잡기...

또, 곱셈이 덧셈을 간단히 표현한 것이라고 하더라도 문제이다. 왜 굳이 곱셈을 "먼저" 덧셈으로 바꾸어야 한단 말인가? \(1+2\times3\)에서 \(2\times3\)을 \(2+2+2\)로 먼저 바꾸어야 할 논리적인 이유가 있는 것은 아니지 않은가? 이것은 그저 "곱셈을 먼저 계산한다"라는 규칙을 표현만 바꾼 것뿐이다.

이런 예를 생각하면 좀더 분명해질 것 같다. 정수의 뺄셈은 덧셈에 대한 역원을 이용하여 모두 덧셈으로 바꿀 수 있다. 그렇다면 연산에 대한 우선순위를 생각하지 않은 상태에서, \(1-2\times3\)은 \((1+(-2))\times3\)로 바꿀 수도 있고, \(1-(2+2+2)\)로 바꿀 수도 있다. "어느 쪽을 먼저 바꿔 넣느냐"는 것은 결국 "어느 연산을 먼저 하느냐"와 똑같은 얘기가 된다.

아무튼 결론은

루나러브굿 님과 투명드래곤 님 속 터지시겠습니다. -_-;
@ 진도가 안 나가면 이러고 놂.... OTL
반응형

'Math' 카테고리의 다른 글

그리스 문자 쓰는 법  (14) 2008.04.16
Proofs from THE BOOK  (9) 2008.04.07
사칙연산과 pgr21  (7) 2008.04.02
Gerstein  (5) 2008.03.31
사칙연산과 괄호  (10) 2008.03.28
:
Posted by puzzlist
2008. 4. 2. 17:23

사칙연산과 pgr21 Math2008. 4. 2. 17:23

방문자 유입 경로를 보니 pgr21.com이 여럿 나와 있었다. Unofficial Progamer Ranking Site라고 하는데, 프로고 아마고 게이머와는 관련이 없는 이곳을 어쩌다 오셨나 싶어 보니, 사칙연산에서 왜 덧셈보다 곱셈을 먼저 하는지에 대해 200개가 넘는 댓글로 격론이 벌어지고 있었다.

두뇌 풀 가동!! - prg21.com 유머게시판

질문을 하는 쪽은 "곱셈을 덧셈보다 먼저 하는 논리적인 이유가 있는지"를 묻는데, 일부 사람들이 "곱셈이니까" 정도의 답변(-_-;)을 하다보니 댓글이 무진장 길어진 것이었다.

그 과정에서 내가 썼던 글(사칙연산과 괄호)을 투명드래곤 님이 링크해 놓으셨고.

댓글들을 쭉 읽어본 소감은...

루나러브굿 님, 속 터지시겠습니다. -_-;

반응형

'Math' 카테고리의 다른 글

Proofs from THE BOOK  (9) 2008.04.07
사칙연산과 환원주의  (1) 2008.04.02
Gerstein  (5) 2008.03.31
사칙연산과 괄호  (10) 2008.03.28
2008년 Abel 상  (4) 2008.03.28
:
Posted by puzzlist
2008. 3. 28. 17:35

사칙연산과 괄호 Math2008. 3. 28. 17:35

두 온 아흔 넷. 정말로 진지하게 궁금한 수학적 의문 - 다크초콜릿

예전에 모 방송에서 111+1x2가 얼마냐는 문제에 대해 224를 답으로 한 바람에 여러 사람들이 113과 224로 의견이 나뉘어 싸우는 일이 있었다. 초등학교 교육만 제대로 받았어도 절대 틀릴 수가 없는 문제인데, 어찌된 일인지 224가 정답이라고 우기는 사람이 적지 않았다.

사실 사칙연산에서 덧셈, 뺄셈보다 곱셈, 나눗셈을 먼저 하는 것은 잘 알려진 규칙이지만, 이 규칙이 "그렇게 될 수밖에 없는 것"은 아니다.

우리가 사칙연산을 표현하는 방법은 두 수 사이에 연산자를 쓰는 infix 방식이다. 이 방식의 단점은 연산의 우선 순위를 나타내기 위해 괄호가 필요하다는 점이다. 예를 들어, (1x2)+(3x4)를 괄호 없이 나타내기는 불가능한데, 흔히 쓰는 전자계산기에 M+와 같은 기억용 버튼이 있는 것도 이 때문이다. 참고로 연산자를 뒤에 쓰는 postfix 방식으로는 "(1에 2를 곱한 것)에 (3에 4를 곱한 것)을 더하라", 즉 "1 2 x 3 4 x +"로 괄호 없이 나타낼 수 있다.

egloos의 Rudy 님도 지적했지만, 곱셈과 나눗셈을 먼저 한다는 것은 사실 곱셈과 나눗셈 연산에 있는 괄호를 생략하는 것이다. 즉, 111+1x2는 사실 111+(1x2)를 줄여쓴 것이다. 어차피 infix 방식은 우선 순위를 나타내는 방법이 필요하므로, 덧셈이든 곱셈이든 어느 한 쪽의 괄호를 생략하는 규칙을 정하는 편이 표기를 간단하게 만든다.

그렇다면 왜 하필 곱셈과 나눗셈에 있는 괄호를 생략하는 것일까? 앞서 말한 대로 반드시 그래야만 하는 것은 아니다. 곱셈, 나눗셈이 아니라 덧셈, 뺄셈에 있는 괄호를 생략한다고, 즉 사칙연산에서 덧셈, 뺄셈을 곱셈, 나눗셈보다 먼저 한다고 처음부터 규칙을 정했다고 해도 문제가 생기지는 않는다. 다만 지금과 같은 규칙이 정해진 것은 곱셈, 나눗셈의 괄호를 생략하는 쪽이 조금이라도 편한 점이 있기 때문이다.

여러 가지 이유를 생각할 수 있겠지만, 기본적으로 다음 두 가지 정도를 생각할 수 있을 것 같다.

첫째는 Rudy 님의 설명처럼 분배법칙을 간단히 나타내기 위해서이다.

A+BxC를 "곱셈 우선"과 "덧셈 우선"의 두 관점에서 괄호를 써서 나타내어 보면,
 
A+(BxC) = A+(BxC), (A+B)xC = (AxC)+(BxC)

인데, 보다시피 곱셈에 붙어 있는 괄호가 더 많으니 곱셈 쪽의 괄호를 생략하는 편이 낫다.

두번째로는 덧셈은 계산이 간단하지만 곱셈은 상대적으로 어렵다는 점이다.

수식을 나타낼 때, 때로는 그 결과를 끝까지 계산해서 나타내는 것이 불편할 때가 있다. 이 경우 수식을 적당히 정리해서 간단한 형태를 만드는데, 예를 들어 (123x456)+789와 123x(456+789)를 생각해 보자.

이 경우, 456+789와 같은 덧셈은 간단하게 하나의 수로 고칠 수 있지만 123x456을 하나의 수로 고치는 것은 좀 불편하다. 그렇다면 이 수식은 (123x456)+789와 123x1245로 나타낼 수 있고, 역시 곱셈 쪽의 괄호를 생략하는 편이 조금이나마 효율적이다.

그건 그렇고 KTX에서 인터넷이 되니 좋구먼~

반응형

'Math' 카테고리의 다른 글

사칙연산과 pgr21  (7) 2008.04.02
Gerstein  (5) 2008.03.31
2008년 Abel 상  (4) 2008.03.28
63세 전직 경비원, 38년 수학난제 풀어  (9) 2008.03.25
형식주의란 무엇인가?  (1) 2008.03.24
:
Posted by puzzlist