갑자기 방문자 수가 늘어서 확인해 보니, "격자 곱셈"을 검색해서 온 분들이 많았다. 스펀지가 시청률이 별로 높지 않은 걸로 아는데 격자 곱셈은 꽤 재미있는 주제였나 보다.
검색 엔진에 나오는 사이트를 몇 군데 둘러봤는데, 잘못된 정보가 많아서 내가 하나 쓰기로 했다.
이 곱셈법은 고대 인도에서 사용하던 것이다. 어떤 사이트에는 중국에서 사용하던 것이라고 되어 있던데 뭔가 착각을 한 것 같다. 이 곱셈법은 0을 이용한 십진 표기법이 있어야 가능한 것인데, 한자로 수를 표기하는 방법은 이것과는 거리가 멀기 때문이다. 물론 산가지 같은 것을 써서 똑같은 과정을 거칠 수는 있지만, 적어도 "필산(筆算)"과는 거리가 있다.
스펀지에서는 선을 그어서 곱셈을 했지만, 이것 그냥 쇼일 뿐이다. 가로 선 3개, 세로 선 2개를 그어 교점의 개수를 세어 3x2=6을 구하는 것과 같은데, 당연히 선을 긋는 대신 숫자를 쓰는 쪽이 훨씬 간편하고 효율적이다.
예를 들어 123x45를 격자 곱셈법으로 계산하면 다음과 같다.
1. 윗줄 왼쪽 첫 번째 칸에는 1x4의 결과를, 그 다음 칸에는 2x4의 결과를, 마지막 칸에는 3x4의 결과를 십의 자리 수와 일의 자리 수를 나누어 쓴다.
2. 아랫줄도 마찬가지.
3. 그 다음 대각선을 따라 수들을 더한다. 이때 받아올림을 생각하여 더한다. 왼쪽 첫 번째 칸에는 4뿐이지만, 그 다음 대각선에서 1+8+1+5=15가 나오므로 십의 자리 수 1을 왼쪽에 더하여 5535를 얻는다.
방법을 보면 당연하지만 이것은 10을 X로 표현하는 로마 숫자 체계에는 적용하기 어렵다. 이 방법을 유럽에 전한 사람은 Fibonacci로 알려져 있는데, 그는 자신의 저서 Liber Abaci에서 인도-아라비아 숫자를 이용한 십진 기수법과 함께 소개하였다. 스펀지에는 Pacioli가 전한 것으로 되어 있던데, Fibonacci가 이삼백 년 먼저 살았던 사람이다.
이 격자 곱셈은 사실 우리가 지금 사용하고 있는 곱셈법과 별로 다르지 않다. 위의 123x45를 약간 달리 쓰면 다음과 같다.
점선 위쪽은 123x5, 아래쪽은 123x4를 풀어 쓴 것이다. 현재 우리가 쓰는 곱셈법은 123x5와 123x4를 여러 단계로 나누어 쓰지 않고 받아올림을 이용하여 한 번에 구한다는 점이 다를 뿐이다.
검색 엔진에 나오는 사이트를 몇 군데 둘러봤는데, 잘못된 정보가 많아서 내가 하나 쓰기로 했다.
이 곱셈법은 고대 인도에서 사용하던 것이다. 어떤 사이트에는 중국에서 사용하던 것이라고 되어 있던데 뭔가 착각을 한 것 같다. 이 곱셈법은 0을 이용한 십진 표기법이 있어야 가능한 것인데, 한자로 수를 표기하는 방법은 이것과는 거리가 멀기 때문이다. 물론 산가지 같은 것을 써서 똑같은 과정을 거칠 수는 있지만, 적어도 "필산(筆算)"과는 거리가 있다.
스펀지에서는 선을 그어서 곱셈을 했지만, 이것 그냥 쇼일 뿐이다. 가로 선 3개, 세로 선 2개를 그어 교점의 개수를 세어 3x2=6을 구하는 것과 같은데, 당연히 선을 긋는 대신 숫자를 쓰는 쪽이 훨씬 간편하고 효율적이다.
예를 들어 123x45를 격자 곱셈법으로 계산하면 다음과 같다.
1. 윗줄 왼쪽 첫 번째 칸에는 1x4의 결과를, 그 다음 칸에는 2x4의 결과를, 마지막 칸에는 3x4의 결과를 십의 자리 수와 일의 자리 수를 나누어 쓴다.
2. 아랫줄도 마찬가지.
3. 그 다음 대각선을 따라 수들을 더한다. 이때 받아올림을 생각하여 더한다. 왼쪽 첫 번째 칸에는 4뿐이지만, 그 다음 대각선에서 1+8+1+5=15가 나오므로 십의 자리 수 1을 왼쪽에 더하여 5535를 얻는다.
방법을 보면 당연하지만 이것은 10을 X로 표현하는 로마 숫자 체계에는 적용하기 어렵다. 이 방법을 유럽에 전한 사람은 Fibonacci로 알려져 있는데, 그는 자신의 저서 Liber Abaci에서 인도-아라비아 숫자를 이용한 십진 기수법과 함께 소개하였다. 스펀지에는 Pacioli가 전한 것으로 되어 있던데, Fibonacci가 이삼백 년 먼저 살았던 사람이다.
이 격자 곱셈은 사실 우리가 지금 사용하고 있는 곱셈법과 별로 다르지 않다. 위의 123x45를 약간 달리 쓰면 다음과 같다.
점선 위쪽은 123x5, 아래쪽은 123x4를 풀어 쓴 것이다. 현재 우리가 쓰는 곱셈법은 123x5와 123x4를 여러 단계로 나누어 쓰지 않고 받아올림을 이용하여 한 번에 구한다는 점이 다를 뿐이다.
반응형
'Math' 카테고리의 다른 글
막장으로 치닫는 ㅇㅈㅇ (15) | 2007.10.23 |
---|---|
걱정되는 스펀지 (31) | 2007.10.08 |
격자 곱셈 2 (1) | 2007.10.01 |
Langley's Adventitious Angles (16) | 2007.09.30 |
격자 곱셈 (1) | 2007.09.30 |