달력

1

« 2023/1 »

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
2015. 6. 26. 16:56

누가 수학을 싫어하게 하는가 Math2015. 6. 26. 16:56

이 글은 일본 세키 다카카즈 연구소 소장인 우에노 겐지 교수가 자신의 책 「누가 수학을 싫어하게 하는가」에서 당시 일본 수학교육과정 개편에 대해 비판하며 쓴 글이다. 번역하신 부산대 수학교육과 김부윤 교수의 허락을 얻어 전문을 올린다.



이차방정식

우에노 겐지(上野健爾)
김부윤(부산대 수학교육과 교수) 번역

교육과정심의회(이후 ‘교과심’으로 적는다) 의장인 미우라 슈몬(三浦朱門) 씨가 잡지 「週間敎育Pro」 1997년 4월 1일호의 인터뷰 기사 「교육, 이후의 방향」에서 다음과 같은 발언을 하고 있다. 교과 이기주의를 없애기 위해서, 예를 들어 수학에서는 「소노 아야코(曾野綾子)처럼 “나는 이차방정식도 제대로 할 수 없지만, 65세가 되는 오늘까지 전혀 부자유하지 않았다.”라고 하는」 수학 혐오 위원을 반수 이상 포함해서 수학 교과내용을 엄선할 필요가 있다고. 이 발언으로부터 1년 2개월 정도 지난 금년(1998년) 6월에 교과심(敎課審)의 심의의 정리가 나왔고, 이차방정식의 해의 공식은 중학교 수학에서 자취를 감추게 되었다.
이 발언이 이차방정식이 아니고, 예를 들어 「나는 이과를 대단히 싫어하며, 지동설은 일상생활에 필요로 하지 않았으므로 가르칠 필요는 없다.」라는 발언이었다면 어떻게 되었을까?
이 三浦朱門 씨의 발언에 매스컴은 물론이고 수학교육 관계자까지 어느 한 사람도 공적으로 반론했다는 이야기를 듣지 않는 것은, 우리나라 수학이 놓여 있는 입장을 말하고도 남음이 있는 사실이다.
이차방정식은 옛날부터 수학에 등장하여, 그 해법을 둘러싸고 다양한 시도를 해왔다. 십진법의 기수법을 일찍부터 이용하여 음의 수도 자유자재로 구사한 고대 중국을 별도로 하면, 계수의 양음의 차이에 따라 이차방정식을 다루는 방법의 차이에 많은 수학자들이 고생했다.
인도의 수학과 그리스의 수학을 이어받아서 9세기 전반에 활약한 아라비아의 수학자 알콰리즈미(al-Khwarizmi)는 이차방정식을 모든 계수가 양이 되는 표준형으로 분류하고, 기하학적으로 해를 구했다. 그의 저서 “Al-jabr wa’l muqabala”의 「이항」을 의미하는 아라비아어 Al-jabr이 Algebra(대수)의 어원이 되었다는 것은 잘 알려져 있다. 또 12세기에 알콰리즈미의 저서가 라틴어로 번역되었을 때, 그의 이름은 라틴 식으로 Algorismi로 기술되었다. 그것으로부터 알고리즘(Algorithm)이라는 단어가 탄생했다.
아라비아 수학은 중국의 수학과 마찬가지로 문제 해법의 알고리즘에 중심을 두고 있었기 때문에, 이 명명(命名)은 그 나름으로 의미 있는 일이다.

한편, 중국에서는 고대부터 제곱근이나 세제곱근을 구하는 알고리즘을 확립하고, 고차방정식의 수치해법으로서 호너법(Horner's method)과 같은 방법이 이미 11세기에서부터 13세기에 걸쳐서 확립되었다. 이 점에서 중국 수학은 훨씬 시대를 뛰어넘고 있었다.
실용을 중시한 중국 수학에서는 방정식의 해를 근사적으로 구하는 것으로 시종했다. 그러나 이것이 화(禍)가 되어 방정식을 푸는 것의 의미나 이차방정식의, 더욱이 고차방정식의 근의 공식을 구하는 방향으로 수학은 진전해 가지 못했다, 방정식을 문자식으로 나타내는 것은 중국에서 고차방정식의 수치해법과 동시에 확립되었는데, 계수까지가 문자로 된 일반방정식을 나타내는 문자식은 끝끝내 중국 수학에서는 등장하지 않았다. 서양 수학이 수입되어 그것에 대항하는 형태로 전개된 후기 중국 수학에서도 일반적인 문자식은 등장하지 않았다. 언제든지 원하는 정도(精度)로 방정식의 해를 구할 수 있었던 중국 수학에서 실용적인 관점에서 일반 방정식을 생각할 필요는 없었다.

방정식의 근의 공식을 문제로 하게 된 것은 근세 유럽이다. 이차방정식의 근의 의미를 생각하는 것은 다항식의 인수분해와 밀접하게 관계되며, 복소수가 탄생하는 계기도 되었다. 그를 위해서는 문자식의 등장이 필요했다.
문자식의 등장에 따라 수학이 얼마만큼 풍부하게 되었을까? 근세 유럽 수학의 역사를 보면, 일목요연하며, 또 일본의 세키 타카카즈(關孝和;Seki Takakazu,1642~1708년) 이후의 와산(和算)의 흥망 역사를 보아도 알 수 있다. 세키 타카카즈는 방서법(榜書法)의 이름과 함께, 중국 수학에서의 방정식의 기법을 일반화해서 문자식에 도달했던 것이었다.
문자식은 오늘날 우리들은 당연한 것으로 사용하고 있지만, 일보일석에 탄생한 것은 아니다. 게다가 실용상의 필요에서 가장 수학이 진보한 중국에서 오히려 탄생하지 않았다는 사실은 많은 것을 말하고 있다고 생각된다.

이렇게 중학교 수학에서 가르쳐온 이차방정식의 배후에는 실로 많은 수학자들의 노고의 역사가 있으며, 배우는 것은 쉬지 않음을 알 수 있다. 하지만 이차방정식을 중학교 수학에서 어떻게 다루어야 할까는 전문가 사이에서 큰 논의가 있어야 마땅하다. 그러나 일상생활에서 알지 못하면 곤란할까 곤란하지 않을까로 중학교에서 가르칠까 가르치지 않을까를 논의해야 할 성질의 것은 아니다.
그런데 수학에 한정하지 않고, 과학기술을 지탱해온 많은 학문은 문명의 이기로서만이 아니라, 우리들의 문화 속의 중요한 요소가 되어 있다. 지구는 태양의 둘레를 돌고 있다. 이것을 모르더라도 일상생활에는 아무 지장도 없다. 그러나 우리들의 인식이 천동설에서 지동설로 바뀐 것은 대사건이었다. 우리들이 관찰하고 있는 것은 반드시 세계는 움직인다고는 할 수 없다는 것, 현상을 설명하기 위해서는 관측결과에 바탕을 둔 추론을 반복해갈 필요가 있다는 것, 그 결과는 때로는 우리들의 직관과는 크게 어긋난다는 것, 이러한 사실을 아는 것은 우리들의 인식에 관한 대사건이었다.
마찬가지의 것은, 수학에서는 이미 고대 그리스 이후 알려져 있었다. 당연하다고 여기는 단순한 사실로부터, 추론의 반복으로 당연하다고 도저히 생각할 수 없는 사실을 보일 수 있다. 복잡한 수학적 사실을 소수의 공리로부터 유도한 유클리드의 「원론」은 수학의 추론의 힘을 여실히 보이고 있다. 또 예를 들어, 평면기하학에서 잘 알려진 사실 「두 점을 잇는 직선 가운데 최단인 것은 직선이다.」는 사실로부터 어느 정도 깊은 수학적 사실이 나올까? 극대극소문제에서 변분 문제로 시야를 넓혀 가면, 다시금 현대 기하학이나 물리학까지 관련되도록 논의를 깊게 할 수 있다.
이처럼 생각하는 것의 불가사의함, 중요함을 수학은 가르쳐준다. 유클리드의 「원론」으로 대표되는 학문으로서의 수학의 탄생은, 고대 그리스인의 위대한 업적이며, 오늘날 과학문명의 기초가 되어 있지만, 또 한편으로 우리들의 문화 속에 사고방법의 기초를 주는 것으로서 깊게 뿌리를 내리고 있다. 그것을 우리들은 평소 거의 의식한 적은 없지만.
이렇게 수학은 단순히 계산방법, 문제 풀이 방법을 가르치는 학문이 아니라, 생각하는 방법 그것을 문제로 하는 학문이다.
이차방정식의 해의 공식을 생각하면, 제곱해서 음이 되는 수를 피할 수 없는 문제가 되어 등장해온다. 그것은 또 많은 수학자들이 「허(虛)의 수」로서 공식적으로 사용하는 것을 망설였던 「수」였다. 그러나 오늘날 복소수는 수학에서 중요할 뿐만 아니라, 전기공학이나 물리의 양자역학에서도 필요불가결한 것으로 되어 있다. 이차방정식과 밀접하게 관련된 복소수는 우리들이 알지 못하는 곳에서 문명을 떠받치는 중요한 도구로서 대활약하고 있다.
그런데 나는 53세가 되는 오늘까지 소노 아야코의 문장도, 미우라 슈몬의 문장도 한 줄도 읽은 적이 없고, 그것으로 인해 생활에서 어떤 불편도 느낀 적이 없다. 그렇다고 그 이유만으로 그들의 문장을 초등중등교육의 교과서에서 다룰 필요가 없다고 주장하면 폭언의 비난을 면할 수 없다. 초등중등교육에 적합한 문장일까 아닐까는 교과서를 작성할 때에 판단하면 되는 것이다.
또 나는 지금까지 하이쿠(俳句)를 한 구절도 외운 적이 없고, 그것으로 인해 부자유함을 느낀 적은 없다. 많은 사람들에 있어서도 그렇다. 그렇다고 하이쿠를 초등중등교육의 국어 시간에서 없애버린다면, 우리들은 많은 것을 잃어버린다. 바쇼(芭蕉)[각주:1]는 자신의 하이카이(俳諧)[각주:2]를 「하로동선(夏炉冬扇)」[각주:3]이라 일컫는다. 일상생활에는 불필요한 것이다. 그러나 한편으로, 바쇼는 자신의 하이카이가 사이쿄(西行)[각주:4]나 소우기(宗祇)[각주:5]의 전통을 물려받은 예술임을 자각하고 있었다. 「하로동선」의 하이카이는 언어의 사용방법을 엄하게 음미하고, 언어가 가지는 의미를 깊게 해준다. 그것에 의해 언어가 가지는 힘을 우리들에게 재인식시킴과 함께, 우리들의 정감을 풍부하게 해준다. 그것이 문화가 가지는 중요한 활동이다.
현재의 일본에서는 교육에서조차 바로 도움이 되는, 목전의 것만 쫓아감으로써, 문화라는 중요한 것을 망각하려고 하지는 않는 것일까?

언어라는 관점에서 수학은 또 현대의 많은 학문을 기술하는 언어로서 중요한 역할을 가지고 있다.
수학교육에 대한 많은 비판은 「하로동선」 비슷한 것만 가르치고, 도움이 되는 것을 가르치지 않는다고 요약할 수 있을 것이다. 국어교육으로 말하면, 하이쿠나 단카(短歌)[각주:6] 등을 가르치기보다는, 바로 도움이 되는 편지 쓰는 방법을 가르쳐요 라고 한 논의와 비슷하다. 그러나 하이쿠의 세계를 앎으로써, 언어에 대한 감각을 예민하게 하면, 설득력 있는 의뢰장을 쓰는 것도 할 수 있다면, 기지가 풍부한 편지를 쓰는 것도 할 수 있을 것이다.
수학교육에 대한 비판에는 물론 일리가 있으며, 수학자도 수학교육자도 크게 반성해야 할 점이 있음은 확실하지만, 도움이 되는 것만 가르치고 그것으로 충분할까 라는 기본적인 의문이 남는다. 「하로동선」의 세계를 들여다봄으로써, 도구로서의 수학의 더욱 뛰어남을 기대할 수 있으며, 또 뜻밖의 힌트를 얻을 수도 있을 것이다. 바로 도움이 되는 세계를 떠나서 「하로동선」의 세계에서 배우는 것은, 긴 안목에서 보면 이상할 정도로 도움이 되는 세계를 손에 넣는 것으로 되지 않을까? 수학의 진짜 유용성이라는 것은 「하로동선」의 세계에 많은 혜택을 입고 있는 것은 역사를 읽어보면 잘 알 수 있다.
물론 바로 도움이 되는 수학이 「하로동선」의 세계에서 크게 기여하는 경우가 있다는 것도 소리를 크게 해서 말해두지 않으면 치우친 견해가 될 것이다. 중국 수학이 실용 학문에서 출발해서 크게 진전한 것은 그 한 예이다. 그렇지만 고도로 발달한 중국 수학은 한편으로는 그것의 가장 고도의 부분은 실용에 필요가 없다는 것에서 망각해버려, 더 진전해 갈 수 없었다는 것도 사실이다.

하이쿠로 말하면, 저에게는 부손(蕪村)[각주:7]의 하이쿠가 가장 불가사의 하게 느껴진 적이 있다. 부손에게는

    추위 속에, 역사적으로 유명한 중국의 역수(易水)[각주:8]에 흰 굵은 파가 흐르고 있다.
       易水にねぶか流るる寒さかな

라는 이상한 구절이 있다. 연(燕)나라의 태자 단(丹)의 의뢰를 받아 진왕(秦王;뒤에 시황제)을 암살하러 나서는 형가(荊軻)[각주:9]는, 연나라의 국경을 흐르는 역수에서 단(丹)과의 이별에 즈음하여

    바람은 스산하고 역수 강물은 차갑도다, 
         風蕭蕭兮易水寒
    사나이 한 번 가면 다시 돌아오지 못하리
         壯士一去兮不復還

라고 노래했다. 형가의 진왕 암살은 실패해버렸는데, 이 구절은 「사기(史記)」의 「자객열전」에 묘사된 이야기를 전제로 하고 있음은 틀리지 않다. 이 역수에 파가 흐르고 있다. 누군가가 요리로 사용한 자투리인지도 모른다. 파의 흰 자투리가 흐르고 있는 거리의 청류(淸流)와 역수가 돌연 겹쳐버리는, 실로 불가사의한 구절이다. 역사의 장대한 한 장면과 거리의 비근한 정경(가장 이러한 정경도 없어져 버렸다)이 하나로 되어버리는 장면에서, 이 구절의 불가사의함과 부손의 세계의 불가사의함이 있다.
이 구절을 비롯하여, 부손의 하이쿠를 외워 가면, 그가 살았던 세계와 시대를 더욱 알고 싶게 되어간다.
그러나 현재 우리나라의 교육은 이 부손의 구절을 앞에 두고, 백과사전이나 인터넷으로 장소 ‘역수(易水)’를 조사하고, 풍경 사진이 없을까 조사하고, 부손의 전기를 조사해가면, 이 구절을 음미할 수 있다고 말하고 있는 것처럼 생각된다. 그러면 구절을 음미하는 것이 아니라, 단지 언어를 조사하면 그것으로 됐다고 말해버리는 쪽이 나을지도 모르겠다. 문화로서의 관점이 전혀 누락되어 버리고 있다.

수학에서도 상황은 같다. 이차방정식의 해의 공식을 중학교 수학에서 추방함으로써, 수학을 통해서 생각하는 것의 대단함을 알리고, 수학의 확대를 보일 기회가 중학교 수학에서부터 하나 없어지게 되었다. 이차방정식의 해의 공식을 단순한 지식으로, 암기의 대상으로 보는 것이면, 그것은 타당한 조치일 지도 모른다.
그렇지만 수학이라는 것은 본래 사고방법을 문제로 하는 학문이다. 해의 공식을 앞에 두고, 학생이 가지는 다양한 의문에 진지하게 대응함으로써, 수학 학습을 심화해가는 길을 교육과정심의회는 취해야 했다. 우리들의 문화를 위해서도, 교과 이기주의를 넘어서, 초등중등교육에서 국어와 수학의 시간 증가야말로 교육과정심의회는 제안해야 했다.
우리나라의 기초교육은 지금 붕괴의 위기에 직면해 있다. 그것은 우리들의 문화가 절멸(絶滅)하는 위기이기도 하다.

<誰が数学嫌いにしたのか―教育の再生を求めて, 日本評論社, 2001> p.181-191에서


  1. 마쯔오 바쇼(松尾 芭蕉)는 1644년부터 1694년 10월12일(1694년 11월 28일)까지 생존한 에도 시대 전기의 하이카이(俳諧)사(師)이다. [본문으로]
  2. 주로 에도(江戸) 시대에 빛난 일본문학의 형식, 그리고 그 작품. [본문으로]
  3. 여름 화로와 겨울 부채라는 뜻으로, 철에 맞지 않아 쓸모없는 것을 비유함. [본문으로]
  4. 1118년부터 1190년 3월 31일까지 생존한 헤이안(平安) 시대 말기부터 카마쿠라(鎌倉) 시대 초기에 걸쳐서 활약한 무사・승려・시인이다. [본문으로]
  5. 1421년부터 1502년 9월 1일까지 생존한 무로마치(室町) 시대의 연가사(連歌師)이다. [본문으로]
  6. 음문(韻文)이 있는 와가(和歌)의 한 형식으로 五・七・五・七・七의 오구체(五句体)인 가체(歌体). [본문으로]
  7. 요사 부손(与謝蕪村)은 1716년부터 1784년 1월 17일까지 생존한 에도(江戸) 시대 중기의 일본 시인, 화가이다. [본문으로]
  8. 중국 하북성(河北省)을 흐르는 강. [본문으로]
  9. 형가(荊軻, ?~기원전 227년)는 중국 전국시대의 자객으로, 자는 차비(次非)이며, 위(衛)나라 사람이다. 시황제를 암살하려 했던 인물이다. [본문으로]
반응형

'Math' 카테고리의 다른 글

2016년 수학 달력  (11) 2015.11.05
셰릴의 생일과 수학 공부  (4) 2015.07.05
미지수 x의 기원  (11) 2015.06.06
환은 왜 ring이라 불릴까?  (7) 2015.05.31
아이디얼과 이데알  (8) 2015.05.28
Posted by puzzlist

댓글을 달아 주세요

2015. 6. 6. 00:19

미지수 x의 기원 Math2015. 6. 6. 00:19

학생들이 수학 공부하면서 흔히 가지게 되는 궁금증 가운데 하나가 이것일 듯하다. "왜 하필 미지수를 나타내는 문자가 x인가?"


여기에는 여러 가지 설명이 있는데, 그 가운데 가장 웃겼던 것은 "X-ray, X-file처럼 x는 알 수 없는 무언가를 상징한다. 그래서 수학에서도 미지수를 x로 나타낸 것이다."라는 것이었다. 이 완벽한 본말전도라니.


문자를 이용하여 수식을 나타내는 방법이 개발되면서 수학은 급속히 발전하였다. 미지수를 이용하여 등식을 만들고 식만 잘 정리하면 답이 튀어나오는 방식은 마술과 다름없을 만큼 획기적이었다.


그러나 17세기까지 미지수를 이용하여 식을 나타내는 방식은, 지금의 눈으로 보면 기묘하기 짝이 없었다. 예를 들어, 일차방정식은 미지의 양을 A라 할 때 2A-5=3과 같이 쓰고 방정식을 풀었지만, 이차방정식이 되면, 미지의 양 A를 두 번 곱한 양은 전혀 다른 기호를 써서 나타내었다. Q-3A+2=0과 같이.


이런 방식은 미지수를 문자로 나타내었다기보다는 말로 된 수식을 몇 가지 기호로 고친 꼴에 불과하였다. 미지수의 제곱에 해당하는 부분을 quadratica를 줄여 Q로 나타내는 식.


여기에서 탈피하여 미지수의 제곱을 Q가 아니라 A와 A의 곱으로 나타내는 방식을 도입하면서 방정식 풀이는 세련된 수학이 될 수 있었다. 이 방식의 선구자는 프랑스의 비에트(François Viète)와 데카르트(René Descartes).


특히 데카르트는 저서 "방법서설(Discours de la méthode)"의 부록이었던 "기하학(La géométrie)"에서 이미 알고 있는 양을 알파벳 앞쪽 문자인 a, b, c 등으로 나타내고 미지의 양을 알파벳 뒤쪽 문자인 x, y, z로 나타내면서 지금과 같은 방식을 확립하였다. 여기에 x의 제곱, 세제곱 등을 x의 오른쪽 위에 2, 3을 써서 일관성 있게 나타내어, 미지수를 자유자재로 다룰 수 있게 하였다.


그러니까 지금 우리가 미지수를 x로 나타내게 된 것은 바로 데카르트 때문이라 할 수 있다.


그렇다면, 왜 데카르트는 많은 문자 가운데 x를 사용하였을까? 알파벳 뒤쪽 문자를 쓴다면 x 대신 z를 쓸 수도 있는데.


데카르트가 미지수를 뜻하는 기호로 사용하였던 알파벳 x, y, z 가운데 특별히 x가 더 많이 쓰인 이유로 활자 문제를 드는 경우가 있다. 세 글자 가운데 x가 그나마 많이 쓰이는 글자이어서 여유분 활자가 많았고, 이런 이유로 식자공이 다른 문자보다 x를 미지수 기호로 선택할 것을 제안했다는 것이다. 흥미로운 일화이기는 하나 사실인지 확인하기는 어렵다.


또, 프랑스어에서 x가 별로 쓰이지 않아서 문장과 헷갈리지 않게 x를 골랐다는 주장도 있으나, 장식 있는 문자를 제외하고 세어 보면, 프랑스어에서 가장 적게 쓰이는 문자는 x > y > z > w > k이다. 프랑스어에서 k는 사실상 안 쓰인다고 할 수 있으니, 잘 안 쓰이는 글자를 택한다면 k를 고르는 게 낫다. 그게 아니라도 z가 x보다 훨씬 적게 쓰이니, 역시 x를 선택한 이유를 설명할 수가 없다.


미지수를 x로 나타낸 유래를 아랍어에서 찾는 경우도 있다. TED 강연 가운데 하나인 Why is 'x' the symbol for an unknown?에서는 Terry Moore가 x의 유래를 아랍어 شيء로 설명하고 있다. "어떤 것(something)"을 뜻하는 이 단어를 이슬람 수학자들이 미지수를 나타내는 데 사용하였고, "셰이(shei)"로 읽히는 이 단어를 중세 스페인 학자들이 xei로 쓴 게 미지수 x의 기원이라는 것이다.


TED의 내용이 모두 올바른 것은 아니지만, Moore의 강연은 특히 오류가 많은데, 그럼에도 꽤 인기가 있었는지 여기저기서 이 강연을 인용하는 것을 볼 수 있었다. 그래서 이 긴 글을...


우선, 이 강연에서 Moore가 중세 스페인어에 대해 무지하다는 걸 알 수 있다. Moore는 스페인어에 /sh/ 발음이 없어서 그리스 문자 χ를 빌려왔다고 설명하는데, 중세 스페인어에는 /sh/ 발음이 있었고, 그 글자가 바로 x였다. 그러니까 그리스 문자를 빌려오고 어쩌고 할 필요 없이, 중세 스페인 학자들은 원래부터 x를 써왔다는 말이다.


지금은 스페인어에서 x가 /흐/ 비슷한 소리가 나지만, 16세기까지도 이 글자는 /sh/ 소리였다. 그래서 세르반테스가 쓴 작품은 "돈키호테"가 아니라 "돈키쇼테(Don Quixote)". 스페인 축구 선수 Xavi를 /하비/가 아니라 /샤비/처럼 읽는 이유도 이 사람이 카탈루냐 출신이고, 카탈루냐어에서는 중세 스페인어와 비슷하게 x를 /sh/처럼 소리내기 때문이다.


또, 이슬람 수학자들이 아랍어 شيء를 줄여서 첫 글자 ش(sh)로 미지수를 나타내기는 하였으나, 제곱을 나타내는 글자는 ﻡ(m)이고 세제곱을 나타내는 글자는 ﻙ(k)여서, 유럽 수학자들이 미지수와 그 제곱, 세제곱을 별도의 기호로 나타낸 것과 별로 다르지 않다. 그러니 이슬람 수학자들의 표기법을 받아들여서 ش에 해당하는 x를 미지수로 쓰게 되었다는 것은 좀 억지스럽다.


그리고 무엇보다도 이 주장은 새로운 것이 아니다. 웹스터 사전에도 실렸을 정도이니 한 이백년 정도는 된 주장이다. 유명한 수학사학자 캐조리(Florian Cajori, 1859-1930)는 이 주장에 대해 역사적인 근거가 없다고 설명하고 있다.


그렇다면 왜 데카르트는 미지수를 나타내는 문자로 x를 골랐을까? 흥미로운 주장 가운데 하나로, 독일의 루돌프(Christoph Rudolff)가 미지수를 나타내기 위해 사용하였던 기호가 x와 비슷하여 데카르트가 착각하였다는 것도 있다.


루돌프는 당대에 영향력 있었던 수학 책을 쓰면서, 미지수를 radix로 부르고, 독일 필기체 r와 x를 합친 기호를 사용하였다. 물론 그도 이전 수학자들처럼 제곱, 세제곱 등등을 전혀 다른 기호로 나타내었으므로, 미지수를 문자로 나타낸 원조라 하기는 조금 어렵다.


루돌프의 책 Coss. 기호 설명 가운데 위에서 두 번째가 radix이다.
- 캐조리(Cajori)의 A History of Mathematical Notations에서 인용


어쩌면 데카르트는 흔히 쓰이던 루돌프의 기호와 비슷한 문자를 골랐는지도 모른다. 그렇지만 데카르트가 남긴 기록 가운데 루돌프의 기호와 미지수 x를 함께 쓴 것들이 있어서 적어도 데카르트가 기호를 착각하였다는 주장은 옳지 않다.


데카르트가 문자 x를 고른 이유에 대한 정답은 아마도 "알 수 없다"가 되어야 할 것 같다. 현재 알려져 있는 여러 학설들이 거의 모두 억측이거나 역사적인 근거가 부족하기 때문이다.


미지수를 문자로 나타낸다는 아이디어 자체는 데카르트가 최초라 하기 어렵겠지만, 제곱, 세제곱 등등을 다른 기호로 나타내는 대신 문자 x를 다시 이용하여 나타낸다는 것은 데카르트의 획기적인 착상이라 할 만하다. 이것이야말로 미지수를 문자로 나타내고 식을 직접 연산한다는 대수학의 핵심적인 철학이고, 데카르트의 방식이 널리 퍼질 수 있었던 근본 이유였다.

반응형

'Math' 카테고리의 다른 글

셰릴의 생일과 수학 공부  (4) 2015.07.05
누가 수학을 싫어하게 하는가  (0) 2015.06.26
환은 왜 ring이라 불릴까?  (7) 2015.05.31
아이디얼과 이데알  (8) 2015.05.28
행렬의 trace는 어디서 온 용어일까?  (1) 2015.05.25
Posted by puzzlist

댓글을 달아 주세요

2015. 5. 31. 23:24

환은 왜 ring이라 불릴까? Math2015. 5. 31. 23:24

이전 글에 댓글로 환에 대해 물어보신 분이 있으셔서 답.


수학에서 환(環)은 독일어 Ring을 번역한 것이고, 이 단어는 영어 ring과 철자, 발음, 뜻이 거의 같다. 그러니 Ideal처럼 "이데알"로 읽을지 "아이디얼"로 읽을지 고민할 필요가 없다.


사실 우리말로 "환"이라는 표준적인 번역어가 있으니 원어의 발음에 신경쓸 필요는 더 없다. 그런데도, ring-theoretic을 "고리 이론적"이라고 번역하는 번역자가 있긴 했지만. 


이 단어는 독일 수학자 힐베르트(David Hilbert)가 정수환을 Zahlring(수+고리)이라고 부른 데서 유래한 것으로 알려져 있다. 


왜 하필 Ring이라는 단어를 골랐는지는 분명하지 않으나, 독일어 Ring에 모임, 집단이라는 뜻이 있기 때문이라는 설이 있다. 영어 ring도 흔하지는 않지만 이런 뜻으로 쓰이는 경우가 있다. 


아마도 환의 대표적인 예로, 정수를 더한 다음 n으로 나눈 나머지를 구하는 연산이 정의된 Zn 같은 구조가 1을 반복해서 더하면 다시 1로 "되돌아 온다"는 점에서 "고리"의 뜻을 가진 Ring을 고른 것이 아닌가 추측하고 있다.


프랑스어 anneau나 한자어 環 모두 "모임"보다는 "고리, 반지"의 뜻을 살린 번역이라 할 수 있다.


그래서 ring 가운데 가장 좋은 ring은 wedding ring.


반응형

'Math' 카테고리의 다른 글

누가 수학을 싫어하게 하는가  (0) 2015.06.26
미지수 x의 기원  (11) 2015.06.06
아이디얼과 이데알  (8) 2015.05.28
행렬의 trace는 어디서 온 용어일까?  (1) 2015.05.25
John Nash Jr. 사망  (1) 2015.05.25
Posted by puzzlist

댓글을 달아 주세요

2015. 5. 28. 13:39

아이디얼과 이데알 Math2015. 5. 28. 13:39

예전에 어떤 모임에서 수학 용어 ideal에 대한 이야기가 나왔다. 이것은 수학의 환 이론(ring theory)에서 핵심적인 개념으로, 마땅한 번역어가 없어서 그냥 "아이디얼"로 부르는 것이 보통이다.


그 모임에서 한 분이, ideal을 "이데알"이라고 써 놓은 책이 있더라면서 무진장 비웃었다. "세상에 이데알이 뭐야, 이데알이!"


아마 일본에서 이걸 "이데아루(イデアル)"라고 하니까, 나이 많은 저자가 무식하게 일본식 용어를 썼다고 생각했는지도 모르겠다.


그래서 어디 가서 망신당하실까 봐 친절하게 한 말씀 드렸다. "그거 원래 독일어 Ideal에서 온 거니까 사실 '이데알'로 읽는 게 맞습니다."


독일 수학자 Kummer가 페르마의 마지막 정리를 증명하려는 과정에서 "소인수분해가 잘 되는 이상적인(ideal) 수(Zahl)"라는 뜻에서 "ideale Zahlen"을 생각했고, Dedekind가 이걸 일반화하여 Ideal이라는 개념을 만들어내었다. 그러니까 족보를 따지면 독일어 Ideal을 읽어서 "이데알"로 쓰는 게 맞다고 할 수 있다.


물론 이제 독일어로 "에네르기", "알레르기"라고 하는 대신 "에너지", "알러지"로 읽는 시대가 되었으니, "이데알"이 아닌 "아이디얼"로 읽는 게 이 시대에는 정답인지도 모르겠다. 그렇더라도 "이데알"이 비웃음 당할 표기는 아니지 않을까?


아무튼 그 분은 내 이야기를 듣더니 그때부터 조용...

반응형

'Math' 카테고리의 다른 글

미지수 x의 기원  (11) 2015.06.06
환은 왜 ring이라 불릴까?  (7) 2015.05.31
행렬의 trace는 어디서 온 용어일까?  (1) 2015.05.25
John Nash Jr. 사망  (1) 2015.05.25
ICM 2014 셋째 날  (6) 2015.02.10
Posted by puzzlist

댓글을 달아 주세요

2015. 5. 25. 19:32

행렬의 trace는 어디서 온 용어일까? Math2015. 5. 25. 19:32

수학 용어 가운데 그 유래를 짐작하기 어려운 것들이 있는데, 행렬의 대각 성분 합을 뜻하는 trace도 그 가운데 하나다.


영어 단어 trace를 곧이곧대로 옮기면 "흔적" 정도 될 텐데, 보통은 뜻을 살려 "대각합" 정도로 옮기는 것 같다. 일본과 중국에서는 모두 trace의 원래 뜻 그대로 한자 跡로 번역한다.


선형대수학을 처음 배울 때부터 trace는 도무지 이해가 안 되는 단어였다. "흔적"이라니? 행렬의 중요한 불변량 가운데 하나이니 흔적처럼 남는다고 억지로 이해할 수도 있겠지만, determinant처럼 의미가 분명한 것은 분명히 아니었다.


이 단어는 원래 독일어 Spur를 영어로 번역한 것이라고 하는데, Spur의 뜻이 "동물이 남긴 발자국, 자취, 흔적"이라고 한다. 결국 독일 수학자들이 왜 이걸 Spur로 이름지었느냐가 문제.


궁금증이 해결되지 않던 중, 흥미로운 글을 발견하였다. Paul Cohen이 Spur의 유래에 대해 이야기하면서, 이 단어는 원래 영어 단어 spur를 그대로 가져다 쓴 것이라고 했단다. Cayley가 행렬의 주대각선 부분이 박차(spur)를 닮아서 이렇게 불렀는데, 독일 수학자들이 번역하지 않고 그대로 가져다 쓴 것이라고. 이 단어를 독일어 Spur로 오해하는 바람에 영어 trace가 되었다는 것이다.


이게 사실이면 참 웃기는 사건이고, 모양 때문에 spur로 이름을 정한 Cayley도 웃긴다.


PS. 누군가 Cayley의 논문집(Collected Works)을 검색해 보니 spur가 두 번 나오긴 한다는데, 행렬이 아니라 물리적 장치에 대한 것이었다고 한다. 아무래도 Cohen의 주장은 사실이 아닐 것 같다. 교차검증할 수 있는 자료도 거의 없고.

반응형

'Math' 카테고리의 다른 글

환은 왜 ring이라 불릴까?  (7) 2015.05.31
아이디얼과 이데알  (8) 2015.05.28
John Nash Jr. 사망  (1) 2015.05.25
ICM 2014 셋째 날  (6) 2015.02.10
ICM 2014 둘째 날 - 브리지스  (8) 2014.09.15
Posted by puzzlist

댓글을 달아 주세요

2015. 5. 25. 09:15

John Nash Jr. 사망 Math2015. 5. 25. 09:15

소설과 동명의 영화 "뷰티풀 마인드(Beautiful mind)"의 실제 주인공으로, 노벨 경제학상을 수상한 수학자 John Nash Jr.가 사망하였다. 향년 86세.

2015년 아벨상 수상자로 선정되어 노르웨이 오슬로에서 시상식을 마치고 미국으로 돌아와, 공항에서 집으로 가던 중 택시 사고로 부인 Alicia와 함께 사망하였다고 한다. 현지 시간 5월 23일.

반응형

'Math' 카테고리의 다른 글

아이디얼과 이데알  (8) 2015.05.28
행렬의 trace는 어디서 온 용어일까?  (1) 2015.05.25
ICM 2014 셋째 날  (6) 2015.02.10
ICM 2014 둘째 날 - 브리지스  (8) 2014.09.15
ICM 2014 첫째 날 - 개막식 이후  (0) 2014.09.10
Posted by puzzlist

댓글을 달아 주세요

2015. 2. 10. 11:08

ICM 2014 셋째 날 Math2015. 2. 10. 11:08

둘째 날에는 ICM 행사장인 COEX는 근처에도 못 가보고 하루 종일 과천에 있다가 셋째 날에야 ICM에 참석하였다. 전날, 그러니까 ICM 둘째 날에는 정수론 분야 포스터 발표가 있었다. 재미있...다기보다는 좀 이상해 보이는 제목들이 있어서 구경하고 싶었는데 둘째 날 가 보지 못해 셋째 날에 전해 듣기만 하였다.


다음 사진은 그 가운데 가장 유명했던(?) 하나. 무려 소수를 만들어 내는 공식이다.


사진은 이동건 박사 페이스북에서


이번 ICM에서 나는 학회 프로시딩을 담당한 편집위원을 겸하게 되어서, 발표자들이 보내온 초록 편집도 일부 담당하였는데, 제목과 초록을 보면 정말 이상한 발표들이 많았다. 리만 가설을 증명했다는 주장, 중학교 수준의 간단한 내용 등등. 그 가운데 하나가 저 소수 생성 공식으로, 당연히 말도 안 되는 엉터리다.

저 포스터가 주장하는 것은,
\[3 \times 5 - 2 = 13, 3 \times 5 \times 7 - 2 = 103, 3 \times 5 \times 7 \times 11 - 2 = 1153\]
등등이 모두 소수라는 것이다. 몇 개 계산해 보면

\[3 \times 5 \times \dotsb \times 23 \times 29 - 2 = 3234846613 = 43 \times 167 \times 450473\]

로 합성수가 나온다.


이 사실을 지적해 주니, 저 포스터 주인, 밑에다 "몇 개의 반례를 제외하면 사실"이라고 추가했다고. 아마도 저런 형태의 소수가 무한히 많으냐 그렇지 않으냐는 미해결 문제일 텐데, 무슨 생각으로 저런 포스터를 만들었는지 이해가 안 된다.


나중에 들어보니, 외국 나가기 쉽지 않은 일부 국가에서는 ICM에 참석한다는 이유로 비자를 받아서 외국 나간 다음 불법 체류하는 사람도 있다고. 실제로 이번 ICM에서도 발표 신청해 놓고 나타나지 않은 사람들이 꽤 있었다. 대부분 발표 제목이 뭔가 이상했다.


8월 15일 광복절인 셋째 날 오후 강연은 아르투르 아빌라(Artur Avila)로 시작. 필즈상 수상자여서 대인기. 둘째 날 필즈 메달리스트 강연은 마르틴 하이러(Martin Hairer)가 진행하였다. 그렇지만 셋째 날에 아마도 수학자들이 더 많이 관심을 가졌을 강연은 저녁 6시에 시작된 존 밀너(John Milnor)의 강연. 필즈상, 울프상, 아벨상을 모두 수상한, 그야말로 "수학의 신". 인품도 신에 가깝다. 강연 제목은 Topology through Four Centuries.


이 강연은 아벨상 재단에서 후원하는 것으로, 지난 ICM 2010부터 시작되었다. 주최국에서 아벨상 수상자 가운데 한 명을 강연자로 선정할 수 있다. 지난 대회 때는 2007년 수상자였던 인도 출신 스리니바사 바라단(Srinivasa Varadhan). 인도에서 개최하니 인도인 수상자를 고르는 게 당연했다. 덕분에 "수학의 신"을 우리나라에서 모실 수 있게 되었고.


1931년 생인 Milnor는 83세. 동영상을 보면 자세도 구부정하고 말할 때 숨도 차서, 저러다 쓰러지시지 않을까 조마조마하게 된다. 불행히도 나는 이 강연을 직접 보지 못했다. 저녁에 과천과학관에서 브리지스 특별강연으로 하버드 수학과 노엄 엘키스(Noam Elkies) 교수가 음악과 수학에 대한 강연을 했기 때문이다. 주제는 예상했던 대로 대위법. 엘키스는 피아노에 앉아서 종이에 대위법 주제를 그리고, 직접 피아노까지 쳤다. 전형적인 유태인으로 외모만 보면 그리 매력적이라고 할 수는 없는데, 천재 수학자에 피아노가 더해지니 후광이 번쩍이는 느낌.


밀너 교수의 강연을 못 본 것은 아쉬웠지만, 동영상으로 대신하기로 하였다. 다행히 이번 ICM에서는 거의 모든 강연을 찍어서 유튜브에 올려놓았다. 사실 학회 강연 동영상이라는 게 대부분 별 쓸모가 없었는데, 이번에는 촬영 경험이 풍부한 김선화 박사가 참여하면서 동영상이 대단한 호평을 받았다.


예전 동영상을 보면, 강연 슬라이드만 찍거나 강연자만 찍어 놓은 경우가 많았다. 수학에 대해 잘 모르는 방송사에서 찍으면 특히 이런 경우가 많았다. 강연자만 열심히 찍다가 가끔 슬라이드를 넣는 형태. 슬라이드를 안 보여 주니 내용을 이해하기도 힘들고, 아무 움직임 없이 슬라이드만 보여줄 때는 현장감이 없어서 집중이 안 되었다. 김선화 박사는 이런 문제점을 아주 잘 알고 있어서, 한쪽에는 강연자 모습을 보여주고, 한쪽에는 슬라이드를 보여줘서 거의 완벽한 강연 동영상을 만들어내었다. 아마도 수학 분야에서는 표준적인 형태가 되지 않을지.


이번 ICM에는 정말 수많은 능력자들이 참여하였다. 후발국의 수학자 1000명 초청 홈페이지도, ICM 프로그램 앱도 전부 우리나라 수학자들이 자체 개발하였다. 운영 방식에 있어, 이번 ICM은 이전 대회와는 비교도 되지 않는 수준이었다.



반응형

'Math' 카테고리의 다른 글

행렬의 trace는 어디서 온 용어일까?  (1) 2015.05.25
John Nash Jr. 사망  (1) 2015.05.25
ICM 2014 둘째 날 - 브리지스  (8) 2014.09.15
ICM 2014 첫째 날 - 개막식 이후  (0) 2014.09.10
ICM 2014 첫째 날 - 개막식  (0) 2014.09.07
Posted by puzzlist

댓글을 달아 주세요

2014. 9. 15. 14:08

ICM 2014 둘째 날 - 브리지스 Math2014. 9. 15. 14:08

ICM 2014 첫째 날에 몇 가지 사건 사고가 더 있었다. 네반린나 상 수상자인 수바시 코트(Subhash Khot)의 강연과 제임스 사이먼스(James Simons)의 대중 강연 사이에, 비어 있던 강연장에 들어왔던 학생들이 앞 자리에 놓여 있던 상장 케이스를 발견하였다. 사이먼스 강연 준비 때문에 먼저 들어오셨던 강석진 교수님이 받아서 열어 보니 필즈 상 수상자인 마리암 미르자카니(Maryam Mirzakhani)의 필즈 상 증서. 아마도 개막식 때 아이가 울어서 급히 데리고 나가느라 깜빡했던 것 같다. 당연히 학생들은 증서 들고 기념 촬영.


나중에 이 증서를 발견했다고 IMU 사무총장인 마르틴 그뢰첼(Martin Grötschel)에게 이야기하니, 그렇잖아도 증서를 분실했다고 해서 새로 하나 발급했다고 한다. 그러니까 이번 ICM 2014에서는 필즈 상 수상자는 네 명이지만, 수상 증서는 다섯 장이 있다.


사실 이것보다 더 황당했던 사고(?)는 둘째 날에서야 발견되었다. 필즈 상 수상자인 만줄 바르가바(Manjul Bhargava)가 숙소에 가서 보니 필즈 메달에 이름이 새겨져 있었다고 한다. 그런데 자기 이름이 아니었다고. 그래서 둘째 날 메달에 적힌 원래 주인(마르틴 하이러라고 들었던 것 같은데 기억이 안 난다)에게 들고 갔더니, 그제서야 그 사람도 확인. 그런데 그 사람이 가지고 있던 메달에 적힌 이름이 바가바가 아니었다! 확인 결과, 네 사람의 메달이 전부 바뀌어 있었다. 며칠 후에 이 이야기를 들은 조직위원들은 네 사람이 모두 다른 사람 메달을 받을 경우의 수를 계산하였고...


이런 일이 생길 것을 예상하고 수학 달력에 넣었던 항목


사실, 나는 ICM 둘째 날에 대해서는 쓸 이야기가 별로 없다. COEX 대신 과천과학관에 하루 종일 있었기 때문이다. 과천과학관에서 개최된 브리지스 학회(Bridges Conference)가 8월 14일에 개막되었고, 내가 어쩌다 보니 자문위원단 부위원장을 맡는 바람에... 그러니까 나는 ICM 문화분과 위원, 편집분과 겸임 위원, 데일리 뉴스 공동편집인, 여기에 브리지스 자문위원까지 네 개 직함을 가지고 있었다.


아침 일찍 과천과학원에 가서 리허설 하고 개막식에서 개회사까지 낭독하였다. 사회는 서울대 수학교육과 권오남 교수님. 권오남 교수님과 상명대 이승연 교수님을 비롯한 지역 조직위원들이 진짜 고생 많이 하셨다. 과천과학관장, 브리지스 조직위원장 레자 사란기(Reza Sarhangi), IMU 잉그리드 도비시(Ingrid Daubechies) 회장의 인사말이 모두 끝난 후, 첫 기조 강연은 옥스퍼드 대학에 계신 김민형 교수. 브리지스는 이름 그대로 수학과 예술의 연계를 추구하는 학회여서, 김민형 교수와 같은 초일류 수학자가 예술적인 이야기를 무얼 할지 궁금하였다. 제목은 Arithmetic Symmetry. 수의 덧셈과 곱셈을 이용하여 멋진 대칭성을 보여주는 내용이었다. 궁금한 분은 Galois Visualizations 참고.


이어서 두 번째 기조 강연은 브리지스 조직위원인 카를로 세캥(Carlo Séquin)의 LEGO Knots. 발표 PPT 자료는 여기, 논문집 자료는 여기. 역대 브리지스에서 발표된 논문들도 여기에서 볼 수 있다. 수학 교사들은 한번쯤 훑어보면 좋을 듯.


이밖에도 수많은 전시물, 워크숍 등으로 아주 재미있는 학회였다. 사실 ICM은 수학자들이 연구한 결과를 발표하는 학회이므로, 일반인들은 참여할 만한 프로그램이 많지 않고, 수학자들에게도 자기 관심 분야말고는 재미를 느끼기는 어렵다. 이런 상황에서, 일반 대중은 물론 수학자들에게 흥미로운 프로그램이 바로 브리지스였다. 나중에 ICM 전시장의 대한수학회 부스에서 한 학부모가 "아이랑 같이 30만원이나 들여서 등록을 했는데 볼 거리가 너무 없다"며 항의(?)하는 모습을 볼 수 있었다. 애초에 ICM이 그런 것인데 어쩌란 말인지. 그나마 이번 ICM은 대중 프로그램이 많은 편이었다. 그런데도 학회의 본래 목적과는 거리가 먼 요구를 하니 당황스러운 일이다. 마침 브리지스 학회가 같은 기간에 진행되어 이쪽에 참가하도록 소개할 수 있어 다행이었다.


사실 우리나라에서 ICM을 유치한 직후만 해도 우리는 브리지스 학회라는 게 뭔지도 몰랐는데, 이 모든 사태를 예견한 잉그리드 도비시 IMU 회장이 박형주 ICM 조직위원장에게 브리지스 학회를 같은 기간에 개최하는 방안을 제안해서 이번 행사를 진행할 수 있었다. 그래서인지 그 바쁜 와중에도 도비시 회장이 아침 일찍 과천과학관에 와서 축사까지 하고 갔다.


이런 전시물    저런 전시물


원래는 ICM 쪽에 들어볼까 싶던 강연이 몇 개 있었으나, 브리지스 개막 첫 날이라 도저히 떠날 분위기가 아니어서 끝까지 남아서 저녁 만찬까지 참석했다. 자문위원회 부위원장이라는 임시 직함 때문에 만찬장에서도 브리지스 위원회 회장단과 함께 앉았다. 짧은 영어로 이야기하느라 무척 힘들었다. 브리지스의 사란기 회장이 이란 출신이어서, 이번에 이란 출신인 마리암 미르자카니(Maryam Mirzakhani)가 필즈 상을 수상한 걸 축하한다고 하니 아주 기뻐하였다. 재미있게도 사란기 회장의 딸 이름도 Maryam이라고 한다.


이틀 동안 개막식을 두 번 치르고 나니 파김치가 되어서 숙소로 돌아오자마자 뻗었다. 내일은 느지막이 출근하리라 생각하고.

반응형

'Math' 카테고리의 다른 글

John Nash Jr. 사망  (1) 2015.05.25
ICM 2014 셋째 날  (6) 2015.02.10
ICM 2014 첫째 날 - 개막식 이후  (0) 2014.09.10
ICM 2014 첫째 날 - 개막식  (0) 2014.09.07
ICM 2014 개막 하루 전  (0) 2014.09.05
Posted by puzzlist

댓글을 달아 주세요

2014. 9. 10. 18:44

ICM 2014 첫째 날 - 개막식 이후 Math2014. 9. 10. 18:44

개막식이 끝나고 점심 시간. 점심에는 도시락을 제공하기로 하였다. 하필이면 이 기간에 COEX 식당가 공사가 덜 끝나는 바람에 밥 먹는 게 심각한 문제였다. 원래는 ICM 개막 전에 공사를 끝내기로 했는데 그러지 못한 COEX 쪽의 잘못. 그래서 COEX에서 사과의 뜻으로 큰 홀 두 개를 무상으로 빌려줬다. 점심 도시락을 이 홀에서 제공하였다.


지난 인도 ICM 2010에서도 개막식 직후 점심은 도시락을 제공했다. 샌드위치와 카레 가운데 하나를 고르는 것이었고, 대부분 별미라는 생각에 카레를 주문했는데, 이게 먹어 보니 괴식에 가까웠다. 그래서 다음 날부터 유료 점심은 대부분 샌드위치로 선택. 그러다 보니 조금 늦으면 매일 새로운 종류의 괴식 카레만 남는 문제가 있었다. 어디 나가 먹을 데도 없었는데.


우리 쪽에서 제공하기로 한 도시락도 처음에는 영 맛이 없어서 한번 퇴짜를 놓고 새 업체를 선정하였다. 이 과정에서 역시 행사준비 분과위원들 고생이 많았다. 동영상 시사하는 날 같이 시식하기로 해서 기다리다가, 결국 나는 기차 시간 때문에 아무것도 못 먹었다. ㅠㅠ


아무튼 이번에 제공된 점심은 꽤 맛있었고, 무엇보다 홀이 넓어서 편히 점심을 먹을 수 있었다. 인도에서는 홀에 탁자 몇 개만 있어서 대부분 바닥에 주저 앉아 점심을 먹어야 했으니, 인도 ICM 갔다 고생했던 사람들은 모두들 만족해 했을 듯. 실제로 이 공간은 커피도 무한 제공하고 있어서 휴식 공간으로도 좋아서 ICM 기간 내내 호평이었다.


오후에는 필즈 상 수상자에 대한 Laudation이 있었다. Laudation은 "칭송"의 뜻으로 필즈 상 수상자의 업적에 대해 대가들이 설명하는 시간이다. 아빌라(Avila)에 대하여 에티엔 기(Etienne Ghys)가, 바르가바(Bhargava)에 대하여 베네딕트 그로스(Benedict Gross)가, 하이러(Hairer)에 대하여 오페르 자이투니(Ofer Zeitouni)가, 그리고 미르자카니(Mirzakhani)에 대하여 커티스 맥멀런(Curtis McMullen)이 강연을 맡았다. 마지막으로 네반린나 상 수상자인 수바시 코트(Subhash Khot)에 대한 칭송은 산제브 아로라(Sanjeev Arora)가 담당하였다. 특히 필즈 상 수상자인 맥멀런이 제자의 필즈 상 수상 업적을 설명하는 장면은 감동적이었다. 이로써 사제가 필즈 상을 받은 경우가 Schwartz-Grothendieck, Grothendieck-Deligne, Atiyah-Donaldson, Lions-Villani에 이어 다섯 번째.


저녁에는 한국 수학의 밤(Korean Math Night) 행사가 있었다. ICM 한국 조직위원들과 IMU 위원들, VIP들을 초청하여 진행한 만찬이었다. 의자 없이 서서 가볍게 먹는 행사였는데, 무거운 가방 든 사람들이 많아 좀 힘들고 어수선했다. 이어서 8시부터 대중 강연.


첫날의 가장 큰 이벤트는 개막식이겠지만, 이번에는 저녁 대중 강연도 큰 이벤트였다. 무엇보다 연사가 그 유명한 제임스 사이먼스(James Simons)였으니. 세계 최고의 펀드 매니저 가운데 한 명으로, 젊어서 일급 수학자였던 사람이 어느날 월가(Wall street)로 진출하여 최고의 펀드 매니저가 되고, 엄청난 재산을 모은 다음 수학 발전을 위하여 거액을 기부하고 있으니 확실히 화제의 인물이라 할 만하다.


베이징 ICM 2002에서는 존 내시(John Nash)와 스티븐 호킹(Stephen Hawking)이 대중 강연을 하여 화제가 되었다. 우리도 그 정도의 인물이 대중 강연을 하면 좋겠다고 생각하다가 물망에 오른 인물이 사이먼스 회장. 문제는 너무 바쁜 사람이라 ICM 기간에 올 수 있을지 알 수가 없었다. 실제로 비서진에서는 절대 참석 불가라고 하였으나, 사이먼스 본인이 직접 일정 조정하고 자가용 비행기로 날아왔다.


유명한 인물이다 보니 청중도 엄청나게 많았다. 유명한 수학자들도 많았고. 이 강연은 내가 속한 문화분과 담당 업무라 한국 수학의 밤 중간에 강연장에 올라가 장내 정리하고 리허설. 원래는 강연 원고를 받아서 번역 자막을 올릴 생각이었으나, 강연 원고 없이 강연한다고 해서 통역사가 통역하는 대로 속기사가 받아적어서 자막을 올리는 방식으로 진행하였다. 문제는 통역사는 수학을 잘 모른다는 점. 금융수학 전문가가 한 명 붙어서 자막을 수정하기는 했지만, 아무래도 실시간으로 진행하기는 쉽지 않았다. 그러다 보니 "Stokes' Theorem"을 "스토크스 정리"가 아니라 "주식 이론"으로 번역하는 사고도 있었다. 수학자 "Yau"를 "야후(Yahoo)"로 번역하기도 하였고. "cohomology"는 "코호몰로지"로 제대로 나오기까지 한 다섯 가지 정도 버전으로 등장했다.하여간 이런 식으로 방송 사고에 가까운 번역이 난무하다 보니 이 강연은 다 찍어 놓고도 VOD 공개를 할 수가 없었다. 지금은 자막이 안 보이는 버전으로 공개되어 있다.





중간에 자막이 안 뜨는 사고가 나서 통역팀에 가 보니, 속기사들 정말 정신 없이 타자를 치고 있었다. 저런 상황에서 제대로 된 번역을 기대하기는 힘들 수밖에 없어 보였다.


강연이 끝나고 질문 시간이 되었는데, 금전적인 지원을 해 달라는 질문이 많았다. 사이먼스 회장이 그런 질문은 하지 말라는 말을 해야 할 정도. 사업을 하고 있는 수학과 선배 한 분은 "당신이 사업을 하는 데 있어 수학이 얼마나 도움이 되었느냐?"라는 질문을 꼭 하고 싶었다는데 질문하겠다는 사람이 너무 많아 밀렸다고. 사실 그 선배부터 수학 전공했다는 이유로 같은 질문을 많이 받았다나. 그런데 자기가 아무리 얘기해 봐야 권위가 없다면서 사이먼스 회장의 대답을 인용하고 싶었다고.


강연이 끝나고 나니 엄청난 인파가 사인 요청을 해서 사이먼스 회장을 강연장 뒤편 직원 통로로 대피시켜서 내보내야했다. ICM 2014에서 사이먼스가 대중 강연을 하는 것에 대해 안 좋게 평하는 사람도 있었다고 한다. 한국은 너무 돈만 밝히는 나라여서, 사이먼스처럼 돈 많은 사람이 "수학 잘 하면 돈 잘 번다"는 식으로 강연하게 하는 것이라는 평이었다. 정말로 부에만 관심이 있어서 사이먼스 강연을 들으러 온 사람도 없지는 않았겠지만, 자신의 인생에서 수학이 어떠한 역할을 했으며, 이제 그 수학에 어떤 식으로 보답하고 있는지를 사이먼스 같은 대가의 강연을 통해 듣는다는 건 확실히 매력적인 일이 아닐까? 수학을 어떤 식으로 사용하면 돈을 벌 수 있는지가 주제였다면 나쁜 평을 할 수도 있겠으나, 일반 대중, 그것도 학생들이 많은 대중을 상대로 수학에 대해 설명하는 강연이었으니 말이다.

반응형

'Math' 카테고리의 다른 글

ICM 2014 셋째 날  (6) 2015.02.10
ICM 2014 둘째 날 - 브리지스  (8) 2014.09.15
ICM 2014 첫째 날 - 개막식  (0) 2014.09.07
ICM 2014 개막 하루 전  (0) 2014.09.05
잊혀진 한국의 수학자  (26) 2014.08.11
Posted by puzzlist

댓글을 달아 주세요

2014. 9. 7. 12:16

ICM 2014 첫째 날 - 개막식 Math2014. 9. 7. 12:16

대망의 ICM 개막식. ICM의 가장 큰 이벤트 가운데 하나는 뭐니뭐니 해도 필즈 메달(Fields medal) 수상식. 관례적으로 개최 국가의 국가 원수가 상을 수여하게 되어 있어서, 대통령 경호 문제로 사전 등록자만 개막식에 참여할 수 있었다.


혹시라도 늦을까 봐 아침 일찍 COEX에 도착하여 사전등록처에 가서 이름표와 각종 자료를 받았다. 아침 8시도 안 됐는데 이미 사람들로 북적북적하였다. 개막식장에 들어가니 귀빈석 옆에 조직위원용 자리가 예약되어 있었다. 그야말로 코앞에서 필즈 상 수상자들을 볼 수 있게 되었다. 사실 코앞에서 보는 정도가 아니라 좌석 구역 사이 통로를 사이에 두고 바로 옆에 필즈 상 수상자들이 앉아 있었다.


페르마의 마지막 정리 증명이 새겨진 티셔츠를 입고 다닌 후배


개막식 전에 가장 문제가 되었던 것 가운데 하나는 필즈 상 수상자 명단이 유출된 것. ICM에서는 극적 효과를 위해 시상식 전까지는 수상자를 공개하지 않는다. 그런데 어찌된 일인지 새벽에 수상자가 알려져서 위키피디어 항목에까지 올라가 있었다. 일부 언론에서는 나중에 이 사건을 가지고 조직위원회를 비난하기도 했는데, 제대로 조사도 안 하고 쓴 자극적인 기사였다.


진상은 이런 거였다. 개막식이 끝나면 필즈 상 수상자가 세계수학연맹(IMU) 홈페이지에 게시되는데, 담당자가 개막식 직후에 바로 공개하기 위하여 홈페이지 내용을 다 만들어서 서버에 올려 놓은 상태로 대기하고 있었다. 메인 홈페이지에서 해당 항목에 대한 링크만 설정하지 않은 상태였던 것. 그런데 사람들이 해당 항목의 주소를 추측해서 넣어 보니 떡 하니 수상자 명단이 떠 버린 것이다. 이건 명백히 IMU 측 실수.


개막식까지 비밀 유지한다는 게 쉬운 일이 아닌 데다, 이런 비밀주의가 수상자의 국가 언론에서 자료 만드는 데도 방해가 되는 일이라 앞으로는 개막식 두 달 정도 전에 먼저 공개하는 방안이 논의 중이다. 실제로 예전 마드리드 ICM 2006에서는 테렌스 타오(Terence Tao)의 수상을 전혀 몰랐던 호주의 공영 방송 사장이 총리에게 박살나는 일도 있었다고.


개막식은 가야금과 해금 연주로 시작하였다. 잠시 후 서울대 수학과 임선희 교수의 사회로 개막식이 시작되었다. 행사가 행사다 보니 임선희 교수는 새벽에 미장원에서 거금을 들여 머리까지 하고 왔다. 개막 동영상이 나올 때는 국악이 나오는 장면에서 무용단이 올라와 공연을 하였다. 저 동영상 최초 시사 때 나도 행사진행위원들과 함께 참관하였는데, 그때는 미완성이기도 했고 어색한 부분도 꽤 있어서 걱정을 많이 했는데, 개막식 때 보니 음향도 좋고 내용도 괜찮아 완성도가 높았다. 제작 감독이 "완성작은 볼 만할 겁니다."라고 자신 있게 말할 만했다.


개막식 시작 전 담소를 나누고 있는 IMU 사무총장  Grötschel, 1998년 필즈 상 수상자 Gowers, 2003-04 미국 수학회장 Eisenbud.


공연 도중 처용무가 있었는데, 마리암 미르자카니(Maryam Mirzakhani) 교수의 세 살 딸이 처용 얼굴을 보고 무서워 하며 엄청나게 울었다. 아빠가 아무리 안고 돌아서 있어도 굳이 다시 무대로 고개를 돌려보면서 손가락질하며 울었다. 결국 필즈 상 수상자 자리에 앉아 있던 엄마가 와서 안고 나가야 했다.


Mirzakhani 교수의 남편과 딸. 오른쪽은 홀수 Goldbach 추측을 증명한 Harald Helfgott.        문제의 그 처용무<br>&nbsp;


대통령 입장은 전파 방해와 함께 시작되었다. 대통령이 참석하는 행사이다 보니 핸드폰을 쓸 수 없도록 전파 방해를 하는 것이다. 잠시 후 박근혜 대통령, 잉그리드 도비시(Ingrid Daubechies) IMU 회장, 박형주 조직위원장, 최양희 미래창조과학부 장관, 마르틴 그뢰첼(Martin Grötschel) IMU 사무총장이 입장하였다.


박형주 조직위원장의 개회사로 VIP들의 연설이 시작되었다. 수학자 가운데 최고 미남이라 할 만한 조직위원장님이 이 날은 어쩐지 평소의 샤방한 모습 대신 얼굴도 까칠해 보이고 머리도 다듬지 않은 티가 너무 많이 났다. 잠 못 주무셨나 보다라는 생각이 들었다. 더 문제는 개회사를 한참 하시더니 갑자기 버벅거리기 시작한 것. 저러실 분이 아닌데 이상하다 싶었는데, 나중에 이유를 알고 보니, 개회사 연설 원고 마지막 장이 누락되었던 것이다.


연설문을 한참 넘겨가며 연설하다가 페이지를 넘기니 마지막 원고가 없었던 것이다. 마지막 장도 반 이상 원고를 쓰셨다는데... 그야말로 머리 속이 하얗게 되는 경험을 하셨다고. 다행히 자주 하던 이야기에, 영어야 거의 모국어 수준으로 하는 분이니 즉흥적으로 연설해도 별 문제가 없었다. ICM에 대한, 그리고 세계 수학계에서 한국의 역할에 대한 확고한 철학이 있는 분이었으니 가능한 일이었다.


이어서 대망의 시상식. 도비시 회장이 연단으로 나와 필즈 상 수상자를 발표하였다. 수상자 발표 동영상이 뜨도록 도비시 회장이 마법사처럼 손을 흔들어서 청중들을 웃겼다. 필즈 메달이 화면에 나오더니, 메달 아래 쪽에 새겨진 이름이 나타났다. 알파벳 순서로 호명되는 관례에 따라 첫 수상자는 브라질의 아르투르 아빌라(Artur Avlia). 만 35세. 사실 아빌라는 2010년 ICM 때도 유력한 수상 후보였다. 그때 수상자로 선정되지 않은 이유가 너무 젊어서 그런 것 아니냐는 뒷말이 좀 있을 정도였다.


이번 대회부터는 사이먼스 제단의 후원으로 수상자들을 소개하는 짧은 동영상을 상영하기로 하였다. 아빌라가 자신의 연구 분야인 동역학계(dynamical system)에 대하여 소개하고 수상 소감을 이야기하였다. 다른 것보다 코파카바나 해변 모래밭을 맨발로 걸으며 연구한다는 말에는 꽤 부러웠다.


두 번째 수상자는 미국의 만줄 바르가바(Majul Bhargava). 전공은 정수론. 인도 이민 2세로 캐나다에서 태어나 미국에서 자랐다. 1974년 8월 8일생이니 수상일 기준으로는 만 40세를 넘었지만, 필즈 상 수상 조건은 ICM이 개최되는 해의 1월 1일에 만 40세를 넘지 않는다는 것이므로 수상 가능하다. 바르가바도 2010년에 유력한 수상 후보였다. 바르가바는 프린스턴 대학 박사 학위 논문부터 대박이었던, 수학계의 수퍼스타 가운데 한 명이다. 인도 전통 악기인 타블라(tabla)의 명인급 연주자이기도 한데, 동영상도 타블라 연주 장면으로 시작하였다.


세 번째 수상자는 오스트리아의 마르틴 하이러(Martin Hairer). 만 38세. 이번 필즈 상 수상자 가운데 가장 의외의 인물이었다. 필즈 상 수상자는 대개 ICM의 기조 강연(plenary lecture) 연사로 초청되는데, 하이러의 경우 기조 강연보다 한 단계 아래로 평가되는 초청 강연(invited lecture) 연사였기 때문이다. 그렇다고 그가 다른 수상자에 비해 실력이 떨어진다거나 한 것은 아니고, 그의 연구 분야인 확률편미분방정식(stochastic PDE)이 수학계의 전통적인 분야와는 다소 거리가 있기 때문이었다.


네 번째 수상자는 이란의 마리암 미르자카니(Maryam Mirzakhani). 만 37세. 필즈 상 역사상 최초의 여성 수상자이다. 이슬람권 최초이기도 하다. 게다가 IMU 최초의 여성 회장이 주관하는 ICM에서, 대한민국 최초의 여성 대통령이, 최초의 여성 수상자에게 필즈 상을 수여하니 정말로 ICM에서 역사적인 장면이었다.


다음 날 발행될 ICM 2014 신문. 편집분과 겸임위원이어서 발간 예정인 신문을 미리 볼 수 있었다.


이어서, 전산 수학 분야에 수여되는 네반린나 메달(Nevanlinna medal) 수상자가 호명되었다. 인도의 수바시 코트(Subhash Khot). 만 36세. 네반린나 상 또한 필즈 상처럼 만 40세 이하의 수학자에게 수여된다. 이 상은 핀란드 수학회에서 후원하는 것으로, 핀란드 수학자 롤프 네반린나(Rolf Navanlinna)의 이름을 딴 것이다. 우리나라에서도 한국 수학자의 이름을 붙인 상을 ICM에서 수여할 수 있다면 얼마나 좋을까.


다섯 수상자에 대한 시상식이 끝나고, 이어서 가우스 상(Gauss prize)과 천 상(Chern prize)의 수상자 발표가 있었다. 가우스 상은 응용 수학 분야에 주어지는 상으로, 독일 수학회에서 후원하고 있다. 2006년부터 수여되어, 올해가 세 번째이다. 수상자는 미국의 스탠리 오셔(Stanley Osher). 개막식 귀빈석에 어깨를 드러낸 튜브탑 원피스 차림의 젊은 여성이 앉아 있었는데, 오셔 교수가 호명되자 환호성을 질러 깜짝 놀랐다. 알고 보니 오셔 교수 부인.


천 상은 유명한 수학자 천싱선(Chern Shiing-Shen)의 이름을 딴 상으로 수학 공로상에 해당한다. 시상은 천 메달 재단(Chern Medal Foundation)에서 하며 사이먼스 재단에서 후원하고 있다. 그래서 시상식에는 천싱선의 딸과 제임스 사이먼스(James Simons)가 함께 단상에 올라와 상을 수여하였다. 수상자는 미국의 필립 그리피스(Phillip Griffiths). 천 상의 상금은 25만 달러인데, 특이하게도 같은 금액을 수상자가 지정하는 단체에 기부한다.


시상식이 끝나고 박근혜 대통령의 연설이 이어졌다. 2010년 인도 ICM에서 인도 대통령이 하는 연설은 속칭 간지가 철철 넘쳤다. 0의 발견부터 시작하여 고대 인도인이 이룩한 어마어마한 수학적 업적을 나열하는데 누가 기죽지 않았으랴. 그 연설을 들으면서, 4년 후 우리나라 대통령은 어떻게 연설해야 할지 생각하니 참으로 답답하였다. 우리도 세계에 자랑할 만한 위대한 수학적 성취가 있다면 얼마나 좋을까. 그렇지만 이런 식으로 연설할 수 있는 나라는 따지고 보면 몇 나라 되지 않는다. 그렇다면 세계 수학계에서 우리나라의 독특한 점은 무엇일까? 아마도 우리나라가 이루었던 경제 발전처럼, 무에서 시작하여 지금 수준에 이른 우리나라 수학계의 발전이 아닐까? 1981년에 처음 IMU 1군에 가입하여, 1993년 2군 승급, 그리고 2007년에 전례 없는 두 단계 승급으로 4군에 오른 것은 세계 수학계에 자랑할 만한 일일 것이다. 그리고 그런 발전상을 인정 받았기에 우리나라가 ICM을 유치할 수도 있었고. 대통령 연설도 이와 비슷한 내용으로 진행되었다.


대통령 연설이 끝난 후, 다시 연단에 선 IMU 도비시 회장이 릴라바티(Leelavati) 상 수상자를 발표하였다. 이 상은 인도 수학회에서 후원하는 것으로, 수학 대중화에 공헌한 인물에게 수여된다. 2010년 첫 수상자는 "페르마의 마지막 정리"로 유명한 사이먼 싱(Simon Singh)이었고 이번 수상자는 아르헨티나의 아드리안 파엔사(Adrián Paenza). 릴라바티 상 시상식은 폐막식 때 진행된다.


이어 천 상에 대한 설명과 함께, 수상자인 그리피스가 아프리카 지역의 수학교육을 위하여 African Mathematics Millennium Science Initiative (AMMSI)라는 단체를 지정하였음을 알리고 상금 전달식이 있었다. 다음으로 MENAO에 대한 소개가 있었다. MENAO는 Mathematics in Emerging Nations: Achievements and Opportunities의 머릿글자로, 개발도상국 수학자들을 지원하는 행사이다. 우리나라가 ICM을 유치하면서, 선진국들의 도움으로 우리나라의 수학이 발전할 수 있었던 것처럼, 우리도 개발도상국의 수학 발전을 돕겠다는 뜻에서 1000명의 개발도상국 수학자들을 초청하는 NANUM 프로그램을 제시하였다. 이 프로그램은 IMU의 큰 관심을 끌어, 개발도상국의 수학 발전을 지원하는 제도로 MENAO가 출범하게 되었다.


도비시 회장에 이어 그뢰첼 사무총장이 연단에 나와 현황 보고를 하였다. 각 상의 수상자 선정 위원 명단 보고에 이어 8월 11일과 12일에 있었던 IMU 총회 결과 보고가 있었다. 2015년부터 4년 동안 IMU를 이끌어 갈 새 회장단이 소개되었다. IMU 신임 회장은 일본의 모리 시게후미(Mori Shigefumi). 1990년 필즈 상 수상자이다. 그리고 박형주 ICM 2014 조직위원장이 한국인으로서는 처음으로 IMU 위원으로 선정되었다.


너무 길어져서 일단 여기서 끝.


반응형

'Math' 카테고리의 다른 글

ICM 2014 둘째 날 - 브리지스  (8) 2014.09.15
ICM 2014 첫째 날 - 개막식 이후  (0) 2014.09.10
ICM 2014 개막 하루 전  (0) 2014.09.05
잊혀진 한국의 수학자  (26) 2014.08.11
ICM 영화 상영 - How I Came to Hate Math  (0) 2014.07.28
Posted by puzzlist

댓글을 달아 주세요